Browse Source

first version for 50one keyboard

master
MaxMalRichtig 6 years ago
commit
ec8d0eb328
  1. 43
      50one.c
  2. 51
      50one.h
  3. 182
      config.h
  4. 2
      eeprom-lefthand.eep
  5. 2
      eeprom-righthand.eep
  6. 162
      i2c.c
  7. 49
      i2c.h
  8. 54
      keymaps/default/config.h
  9. 234
      keymaps/default/keymap.c
  10. 1
      keymaps/default/readme.md
  11. 5
      keymaps/default/rules.mk
  12. 499
      matrix.c
  13. 15
      readme.md
  14. 76
      rules.mk
  15. 106
      split_leds.c
  16. 102
      split_leds.h
  17. 79
      split_util.c
  18. 22
      split_util.h

43
50one.c

@ -0,0 +1,43 @@
/* Copyright 2017 REPLACE_WITH_YOUR_NAME
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "50one.h"
void matrix_init_kb(void) {
// put your keyboard start-up code here
// runs once when the firmware starts up
matrix_init_user();
}
void matrix_scan_kb(void) {
// put your looping keyboard code here
// runs every cycle (a lot)
matrix_scan_user();
}
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
// put your per-action keyboard code here
// runs for every action, just before processing by the firmware
return process_record_user(keycode, record);
}
void led_set_kb(uint8_t usb_led) {
// put your keyboard LED indicator (ex: Caps Lock LED) toggling code here
led_set_user(usb_led);
}

51
50one.h

@ -0,0 +1,51 @@
/* Copyright 2017 REPLACE_WITH_YOUR_NAME
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FIFTY_ONE_H
#define FIFTY_ONE_H
#include "quantum.h"
#ifdef USE_I2C
#include <stddef.h>
#ifdef __AVR__
#include <avr/io.h>
#include <avr/interrupt.h>
#endif
#endif
// This a shortcut to help you visually see your layout.
// The following is an example using the Planck MIT layout
// The first section contains all of the arguments
// The second converts the arguments into a two-dimensional array
#define KEYMAP( \
L00, L01, L02, L03, L04, L05, R00, R01, R02, R03, R04, R05, \
L10, L11, L12, L13, L14, L15, R10, R11, R12, R13, R14, R15, \
L20, L21, L22, L23, L24, L25, R20, R21, R22, R23, R24, R25, \
L30, L31, L32, L33, L34, L35, L36, R36, R30, R31, R32, R33, R34, R35 \
) \
{ \
{ L00, L01, L02, L03, L04, L05, KC_NO }, \
{ L10, L11, L12, L13, L14, L15, KC_NO }, \
{ L20, L21, L22, L23, L24, L25, KC_NO }, \
{ L30, L31, L32, L33, L34, L35, L36 }, \
{ R05, R04, R03, R02, R01, R00, KC_NO }, \
{ R15, R14, R13, R12, R11, R10, KC_NO }, \
{ R25, R24, R23, R22, R21, R20, KC_NO }, \
{ R35, R34, R33, R32, R31, R30, R36 } \
}
#endif

182
config.h

@ -0,0 +1,182 @@
/*
Copyright 2017 REPLACE_WITH_YOUR_NAME
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CONFIG_H
#define CONFIG_H
#include "config_common.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x0001
#define DEVICE_VER 0x0001
#define MANUFACTURER Max malRichtig
#define PRODUCT Keyboard 50one
#define DESCRIPTION A basic but ergonomic 50 key split keyboard
/* key matrix size */
// Rows are doubled-up
#define MATRIX_ROWS 8
#define MATRIX_COLS 7
// wiring of each half
#define MATRIX_ROW_PINS { B1, B3, B2, B6 }
#define MATRIX_COL_PINS { B5, B4, E6, D7, C6, D4, F7 }
#define UNUSED_PINS { F4, F5, F6 } // used for RGB LEDs - not for matrix
/* COL2ROW, ROW2COL, or CUSTOM_MATRIX */
#define DIODE_DIRECTION COL2ROW
// #define BACKLIGHT_PIN B7
// #define BACKLIGHT_BREATHING
// #define BACKLIGHT_LEVELS 3
/* Debounce reduces chatter (unintended double-presses) - set 0 if debouncing is not needed */
#define DEBOUNCING_DELAY 5
/* define if matrix has ghost (lacks anti-ghosting diodes) */
//#define MATRIX_HAS_GHOST
/* number of backlight levels */
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE
/* If defined, GRAVE_ESC will always act as ESC when CTRL is held.
* This is userful for the Windows task manager shortcut (ctrl+shift+esc).
*/
// #define GRAVE_ESC_CTRL_OVERRIDE
/*
* Force NKRO
*
* Force NKRO (nKey Rollover) to be enabled by default, regardless of the saved
* state in the bootmagic EEPROM settings. (Note that NKRO must be enabled in the
* makefile for this to work.)
*
* If forced on, NKRO can be disabled via magic key (default = LShift+RShift+N)
* until the next keyboard reset.
*
* NKRO may prevent your keystrokes from being detected in the BIOS, but it is
* fully operational during normal computer usage.
*
* For a less heavy-handed approach, enable NKRO via magic key (LShift+RShift+N)
* or via bootmagic (hold SPACE+N while plugging in the keyboard). Once set by
* bootmagic, NKRO mode will always be enabled until it is toggled again during a
* power-up.
*
*/
//#define FORCE_NKRO
/*
* Magic Key Options
*
* Magic keys are hotkey commands that allow control over firmware functions of
* the keyboard. They are best used in combination with the HID Listen program,
* found here: https://www.pjrc.com/teensy/hid_listen.html
*
* The options below allow the magic key functionality to be changed. This is
* useful if your keyboard/keypad is missing keys and you want magic key support.
*
*/
/* key combination for magic key command */
#define IS_COMMAND() ( \
keyboard_report->mods == (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)) \
)
/* control how magic key switches layers */
//#define MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS true
//#define MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS true
//#define MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM false
/* override magic key keymap */
//#define MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS
//#define MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS
//#define MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM
//#define MAGIC_KEY_HELP1 H
//#define MAGIC_KEY_HELP2 SLASH
//#define MAGIC_KEY_DEBUG D
//#define MAGIC_KEY_DEBUG_MATRIX X
//#define MAGIC_KEY_DEBUG_KBD K
//#define MAGIC_KEY_DEBUG_MOUSE M
//#define MAGIC_KEY_VERSION V
//#define MAGIC_KEY_STATUS S
//#define MAGIC_KEY_CONSOLE C
//#define MAGIC_KEY_LAYER0_ALT1 ESC
//#define MAGIC_KEY_LAYER0_ALT2 GRAVE
//#define MAGIC_KEY_LAYER0 0
//#define MAGIC_KEY_LAYER1 1
//#define MAGIC_KEY_LAYER2 2
//#define MAGIC_KEY_LAYER3 3
//#define MAGIC_KEY_LAYER4 4
//#define MAGIC_KEY_LAYER5 5
//#define MAGIC_KEY_LAYER6 6
//#define MAGIC_KEY_LAYER7 7
//#define MAGIC_KEY_LAYER8 8
//#define MAGIC_KEY_LAYER9 9
//#define MAGIC_KEY_BOOTLOADER PAUSE
//#define MAGIC_KEY_LOCK CAPS
//#define MAGIC_KEY_EEPROM E
//#define MAGIC_KEY_NKRO N
//#define MAGIC_KEY_SLEEP_LED Z
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
//#define NO_DEBUG
/* disable print */
//#define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
/*
* MIDI options
*/
/* Prevent use of disabled MIDI features in the keymap */
//#define MIDI_ENABLE_STRICT 1
/* enable basic MIDI features:
- MIDI notes can be sent when in Music mode is on
*/
//#define MIDI_BASIC
/* enable advanced MIDI features:
- MIDI notes can be added to the keymap
- Octave shift and transpose
- Virtual sustain, portamento, and modulation wheel
- etc.
*/
//#define MIDI_ADVANCED
/* override number of MIDI tone keycodes (each octave adds 12 keycodes and allocates 12 bytes) */
//#define MIDI_TONE_KEYCODE_OCTAVES 1
#endif

2
eeprom-lefthand.eep

@ -0,0 +1,2 @@
:0F000000000000000000000000000000000001F0
:00000001FF

2
eeprom-righthand.eep

@ -0,0 +1,2 @@
:0F000000000000000000000000000000000000F1
:00000001FF

162
i2c.c

@ -0,0 +1,162 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"
#ifdef USE_I2C
// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;
// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
uint16_t lim = 0;
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
lim++;
// easier way, but will wait slightly longer
// _delay_us(100);
}
// Setup twi to run at 100kHz
void i2c_master_init(void) {
// no prescaler
TWSR = 0;
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
// Check datasheets for more info.
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}
// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
// 1 => error
uint8_t i2c_master_start(uint8_t address) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
i2c_delay();
// check that we started successfully
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
return 1;
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
return 1; // slave did not acknowledge
else
return 0; // success
}
// Finish the i2c transaction.
void i2c_master_stop(void) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
uint16_t lim = 0;
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
lim++;
}
// Write one byte to the i2c slave.
// returns 0 => slave ACK
// 1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
// check if the slave acknowledged us
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
i2c_delay();
return TWDR;
}
void i2c_reset_state(void) {
TWCR = 0;
}
void i2c_slave_init(uint8_t address) {
TWAR = address << 0; // slave i2c address
// TWEN - twi enable
// TWEA - enable address acknowledgement
// TWINT - twi interrupt flag
// TWIE - enable the twi interrupt
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}
ISR(TWI_vect);
ISR(TWI_vect) {
uint8_t ack = 1;
switch(TW_STATUS) {
case TW_SR_SLA_ACK:
// this device has been addressed as a slave receiver
slave_has_register_set = false;
break;
case TW_SR_DATA_ACK:
// this device has received data as a slave receiver
// The first byte that we receive in this transaction sets the location
// of the read/write location of the slaves memory that it exposes over
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
// slave_buffer_pos after each write.
if(!slave_has_register_set) {
slave_buffer_pos = TWDR;
// don't acknowledge the master if this memory loctaion is out of bounds
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
ack = 0;
slave_buffer_pos = 0;
}
slave_has_register_set = true;
} else {
i2c_slave_buffer[slave_buffer_pos] = TWDR;
BUFFER_POS_INC();
}
break;
case TW_ST_SLA_ACK:
case TW_ST_DATA_ACK:
// master has addressed this device as a slave transmitter and is
// requesting data.
TWDR = i2c_slave_buffer[slave_buffer_pos];
BUFFER_POS_INC();
break;
case TW_BUS_ERROR: // something went wrong, reset twi state
TWCR = 0;
default:
break;
}
// Reset everything, so we are ready for the next TWI interrupt
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}
#endif

49
i2c.h

@ -0,0 +1,49 @@
#ifndef I2C_H
#define I2C_H
#include <stdint.h>
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#define I2C_READ 1
#define I2C_WRITE 0
#define I2C_ACK 1
#define I2C_NACK 0
#define SLAVE_BUFFER_SIZE 0x10 //(MATRIX_BUFFER_SIZE + LED_STATE_BUFFER_SIZE)
// i2c SCL clock frequency
#define SCL_CLOCK 400000L
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);
static inline unsigned char i2c_start_read(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_READ);
}
static inline unsigned char i2c_start_write(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_WRITE);
}
// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
#endif

54
keymaps/default/config.h

@ -0,0 +1,54 @@
/*
This is the c configuration file for the keymap
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CONFIG_USER_H
#define CONFIG_USER_H
#include "../../config.h"
#define MOUSEKEY_INTERVAL 20
#define MOUSEKEY_DELAY 50
#define MOUSEKEY_TIME_TO_MAX 60
#define MOUSEKEY_MAX_SPEED 10
#define MOUSEKEY_WHEEL_MAX_SPEED 10
#define MOUSEKEY_WHEEL_TIME_TO_MAX 255
#define TAPPING_TOGGLE 2
#define PERMISSIVE_HOLD
//#define TAPPING_TERM 200
//#define IGNORE_MOD_TAP_INTERRUPT // this makes it possible to do rolling combos (zx) with keys that convert to other keys on hold (z becomes ctrl when you hold it, and when this option isn't enabled, z rapidly followed by x actually sends Ctrl-x. That's bad.)
/* Use I2C! Serial not implemented yet. */
//#define USE_SERIAL
#define USE_I2C
/* Select hand configuration */
//#define MASTER_LEFT
// #define MASTER_RIGHT
#define EE_HANDS
/* Turn on/off the visualization with RGB LEDs */
#define USE_50ONE_LEDS
#endif

234
keymaps/default/keymap.c

@ -0,0 +1,234 @@
#include "50one.h"
#include "action_layer.h"
#include "eeconfig.h"
#include "keymap_german.h"
#include "split_util.h"
extern keymap_config_t keymap_config;
// Each layer gets a name for readability, which is then used in the keymap matrix below.
// The underscores don't mean anything - you can have a layer called STUFF or any other name.
// Layer names don't all need to be of the same length, obviously, and you can also skip them
// entirely and just use numbers.
#define _CUSTOM 0
#define _STANDARD 1
#define _LOWER 14
#define _RAISE 15
#define _BOTH 16
#define LShTab LSFT_T(KC_TAB)
#define RShEnt RSFT_T(KC_ENT)
//Tap Dance Declarations
enum {
L_SHLCK = 0,
R_SHLCK,
CPYCUT,
ESCCLS
};
enum custom_keycodes {
CUSTOM = SAFE_RANGE,
STANDARD,
LOWER,
RAISE,
BOTH
};
void td_escape_close (qk_tap_dance_state_t *state, void *user_data) {
if (state->count <= 2) {
register_code(KC_ESC);
unregister_code(KC_ESC);
}
else {
SEND_STRING(SS_DOWN(X_LALT)SS_TAP(X_F4)SS_UP(X_LALT));
}
}
//Tap Dance Definitions
qk_tap_dance_action_t tap_dance_actions[] = {
//Tap once for Esc, twice for Caps Lock
[L_SHLCK] = ACTION_TAP_DANCE_DOUBLE(KC_LSFT, KC_CAPS),
[R_SHLCK] = ACTION_TAP_DANCE_DOUBLE(KC_RSFT, KC_CAPS),
[ESCCLS] = ACTION_TAP_DANCE_FN(td_escape_close),
[CPYCUT] = ACTION_TAP_DANCE_DOUBLE(KC_COPY, KC_CUT)
// Other declarations would go here, separated by commas, if you have them
};
// Fillers to make layering more clear
#define _______ KC_TRNS
#define XXXXXXX KC_NO
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* Qwertz
* ,------------------------------------------ -----------------------------------------.
* | Esc | Q | W | E | R | T | | Y | U | I | O | P | ß |
* |------+------+------+------+------+------- -------+------+------+------+------+------|
* | Ctl | A | S | D | F | G | | H | J | K | L | Ö |Ü/Ctl |
* |------+------+------+------+------+------- -------+------+------+------+------+------|
* | Alt | Z | X | C | V | B | | N | M | , | . | - |Ä/Alt |
* |------+------+------+------+------+------+------+------+------+------+------+------+------+------|
* | GUI | Del | PDwn | PUp |Lower |Space |Tab/Sh|Ent/Sh|Space |Raise | Left | Down | Up |Right |
* `-------------------------------------------------------------------------------------------------'
*/
[_CUSTOM] = KEYMAP( \
TD(ESCCLS),DE_Q, DE_W, DE_E, DE_R, DE_T, DE_Z, DE_U, DE_I, DE_O, DE_P, DE_SS, \
KC_LCTRL, DE_A, DE_S, DE_D, DE_F, DE_G, DE_H, DE_J, DE_K, DE_L, DE_OE, RCTL_T(DE_UE), \
KC_LALT, DE_Y, DE_X, DE_C, DE_V, DE_B, DE_N, DE_M, DE_COMM, DE_DOT, DE_MINS, RALT_T(DE_AE), \
KC_LGUI, KC_DEL, TD(CPYCUT),KC_PASTE, LOWER, KC_SPC, LShTab, RShEnt, KC_BSPC, RAISE, KC_LEFT, KC_DOWN, KC_UP, KC_RGHT \
),
/* Lower
* ,-----------------------------------------------------------------------------------.
* | ~ | ! | @ | # | $ | % | ^ | & | * | ( | ) | Del |
* |------+------+------+------+------+-------------+------+------+------+------+------|
* | Del | F1 | F2 | F3 | F4 | F5 | F6 | _ | + | { | } | | |
* |------+------+------+------+------+------|------+------+------+------+------+------|
* | | F7 | F8 | F9 | F10 | F11 | F12 |ISO ~ |ISO | | | | |
* |------+------+------+------+------+------+------+------+------+------+------+------|
* | | | | | | | | Next | Vol- | Vol+ | Play |
* `-----------------------------------------------------------------------------------'
*/
[_LOWER] = KEYMAP( \
_______, DE_AT, DE_EURO, DE_LBRC, DE_RBRC, DE_HASH, DE_ASTR, DE_BSLS, DE_SLSH, DE_GRV, DE_ACUT, KC_PSCR, \
_______, DE_AMPR, DE_PIPE, DE_LPRN, DE_RPRN, DE_DLR, DE_PLUS, DE_EXLM, DE_QST, DE_DQOT, DE_QUOT, KC_RCTL, \
_______, DE_TILD, DE_CIRC, DE_LCBR, DE_RCBR, DE_PERC, DE_EQL, DE_LESS, DE_MORE, DE_PARA, DE_RING, KC_RALT, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, KC_HOME, KC_PGDN, KC_PGUP, KC_END \
),
/* Raise
* ,-----------------------------------------------------------------------------------.
* | ` | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | Del |
* |------+------+------+------+------+-------------+------+------+------+------+------|
* | Del | F1 | F2 | F3 | F4 | F5 | F6 | - | = | [ | ] | \ |
* |------+------+------+------+------+------|------+------+------+------+------+------|
* | | F7 | F8 | F9 | F10 | F11 | F12 |ISO # |ISO / | | | |
* |------+------+------+------+------+------+------+------+------+------+------+------|
* | | | | | | | | Next | Vol- | Vol+ | Play |
* `-----------------------------------------------------------------------------------'
*/
[_RAISE] = KEYMAP( \
_______, KC_NO, KC_BTN1, KC_MS_U, KC_BTN2, KC_NO, KC_PCMM, KC_P7, KC_P8, KC_P9, KC_PENT, KC_NLCK, \
_______, KC_BTN4, KC_MS_L, KC_MS_D, KC_MS_R, KC_BTN5, KC_PDOT, KC_P4, KC_P5, KC_P6, KC_PPLS, KC_PAST, \
_______, KC_WH_L, KC_WH_D, KC_WH_U, KC_WH_R, KC_BTN3, KC_P0, KC_P1, KC_P2, KC_P3, KC_PMNS, KC_PEQL, \
_______, _______, _______, _______, _______, KC_BTN1, KC_BTN2, _______, _______, _______, _______, _______, _______, _______ \
),
/* Adjust (Lower + Raise)
* ,-----------------------------------------------------------------------------------.
* | | Reset| | | | | | | | | | Del |
* |------+------+------+------+------+-------------+------+------+------+------+------|
* | | | |Aud on|Audoff|AGnorm|AGswap|Qwerty|Colemk|Dvorak| | |
* |------+------+------+------+------+------|------+------+------+------+------+------|
* | | | | | | | | | | | | |
* |------+------+------+------+------+------+------+------+------+------+------+------|
* | | | | | | | | | | | |
* `-----------------------------------------------------------------------------------'
*/
[_BOTH] = KEYMAP( \
KC_F11, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F12, \
_______, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_NO, \
_______, KC_MPRV, KC_VOLD, KC_VOLU, KC_MPLY, KC_MNXT, KC_WSTP, KC_WSCH, KC_WBAK, KC_WHOM, KC_WREF, KC_WFWD, \
_______, _______, _______, _______, _______, _______, CUSTOM,STANDARD,_______, _______, _______, _______, _______, _______ \
),
/* Qwertz
* ,-----------------------------------------------------------------------------------.
* | Esc | Q | W | E | R | T | Z | U | I | O | P | Bksp |
* |------+------+------+------+------+-------------+------+------+------+------+------|
* | Tab | A | S | D | F | G | H | J | K | L | + | # |
* |------+------+------+------+------+------|------+------+------+------+------+------|
* | Shift| Y | X | C | V | B | N | M | , | . | - |Enter |
* |------+------+------+------+------+------+------+------+------+------+------+------|
* | Ctrl | Alt | AltGr| GUI |Lower |Space |Space |Raise | Left | Down | Up |Right |
* `-----------------------------------------------------------------------------------'
*/
[_STANDARD] = KEYMAP( \
KC_ESC, DE_Q, DE_W, DE_E, DE_R, DE_T, DE_Z, DE_U, DE_I, DE_O, DE_P, DE_SS, \
KC_TAB, DE_A, DE_S, DE_D, DE_F, DE_G, DE_H, DE_J, DE_K, DE_L, DE_OE, DE_UE, \
KC_LSFT, DE_Y, DE_X, DE_C, DE_V, DE_B, DE_N, DE_M, DE_COMM, DE_DOT, DE_MINS, DE_AE , \
KC_LCTL, KC_LALT, DE_ALGR, KC_LGUI, LOWER, KC_SPC, KC_BSPC, KC_ENT, KC_SPC, RAISE, KC_LEFT, KC_DOWN, KC_UP, KC_RGHT \
)
};
void persistent_default_layer_set(uint16_t default_layer) {
eeconfig_update_default_layer(default_layer);
default_layer_set(default_layer);
}
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case CUSTOM:
if (record->event.pressed) {
persistent_default_layer_set(1UL<<_CUSTOM);
}
return false;
break;
case STANDARD:
if (record->event.pressed) {
persistent_default_layer_set(1UL<<_STANDARD);
}
return false;
break;
case LOWER:
if (record->event.pressed) {
layer_on(_LOWER);
update_tri_layer(_LOWER, _RAISE, _BOTH);
} else {
layer_off(_LOWER);
update_tri_layer(_LOWER, _RAISE, _BOTH);
}
return false;
break;
case RAISE:
if (record->event.pressed) {
layer_on(_RAISE);
update_tri_layer(_LOWER, _RAISE, _BOTH);
} else {
layer_off(_RAISE);
update_tri_layer(_LOWER, _RAISE, _BOTH);
}
return false;
break;
case BOTH:
if (record->event.pressed) {
layer_on(_BOTH);
} else {
layer_off(_BOTH);
}
return false;
break;
}
return true;
}
// Runs constantly in the background, in a loop.
void matrix_scan_user(void) {
#ifdef USE_50ONE_LEDS
uint8_t layer = biton32(layer_state);
both_led_all_off();
switch (layer) {
case _LOWER:
both_led_set(LED_GREEN, LED_ON);
break;
case _RAISE:
both_led_set(LED_BLUE, LED_ON);
if (host_keyboard_leds() & (1 << USB_LED_NUM_LOCK)) {
right_led_set(LED_RED, LED_ON);
}
break;
case _BOTH:
both_led_set(LED_RED, LED_ON);
break;
default:
// none
break;
}
#endif
};

1
keymaps/default/readme.md

@ -0,0 +1 @@
# The default keymap for 50one

5
keymaps/default/rules.mk

@ -0,0 +1,5 @@
ifndef QUANTUM_DIR
include ../../../../../Makefile
endif
TAP_DANCE_ENABLE=yes

499
matrix.c

@ -0,0 +1,499 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "pro_micro.h"
#include "config.h"
#include "timer.h"
#include "50one.h"
#ifdef USE_I2C
# include "i2c.h"
#else // USE_SERIAL
# include "serial.h"
#endif
#ifndef DEBOUNCING_DELAY
# define DEBOUNCING_DELAY 5
#endif
#if (DEBOUNCING_DELAY > 0)
static uint16_t debouncing_time;
static bool debouncing = false;
#endif
#if (MATRIX_COLS <= 8)
# define print_matrix_header() print("\nr/c 01234567\n")
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
# define matrix_bitpop(i) bitpop(matrix[i])
# define ROW_SHIFTER ((uint8_t)1)
#else
# error "Currently only supports 8 COLS"
#endif
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
#define ERROR_DISCONNECT_COUNT 5
#define ROWS_PER_HAND (MATRIX_ROWS/2)
static uint8_t error_count = 0;
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
#if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void);
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
static void unselect_rows(void);
static void select_row(uint8_t row);
static void unselect_row(uint8_t row);
#elif (DIODE_DIRECTION == ROW2COL)
static void init_rows(void);
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
static void unselect_cols(void);
static void unselect_col(uint8_t col);
static void select_col(uint8_t col);
#endif
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
#ifdef DISABLE_JTAG
// JTAG disable for PORT F. write JTD bit twice within four cycles.
MCUCR |= (1<<JTD);
MCUCR |= (1<<JTD);
#endif
debug_enable = true;
debug_matrix = true;
debug_mouse = true;
// initialize row and col
#if (DIODE_DIRECTION == COL2ROW)
unselect_rows();
init_cols();
#elif (DIODE_DIRECTION == ROW2COL)
unselect_cols();
init_rows();
#endif
TX_RX_LED_INIT;
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
matrix_init_quantum();
}
uint8_t _matrix_scan(void)
{
int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
#if (DIODE_DIRECTION == COL2ROW)
// Set row, read cols
for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
# if (DEBOUNCING_DELAY > 0)
bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
PORTD ^= (1 << 2);
}
# else
read_cols_on_row(matrix+offset, current_row);
# endif
}
#elif (DIODE_DIRECTION == ROW2COL)
// Set col, read rows
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
# if (DEBOUNCING_DELAY > 0)
bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
}
# else
read_rows_on_col(matrix+offset, current_col);
# endif
}
#endif
# if (DEBOUNCING_DELAY > 0)
if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
matrix[i+offset] = matrix_debouncing[i+offset];
}
debouncing = false;
}
# endif
return 1;
}
#ifdef USE_I2C
// Get rows from other half over i2c
int i2c_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) goto i2c_error;
// start of matrix stored at 0x00
err = i2c_master_write(0x00);
if (err) goto i2c_error;
#ifdef USE_50ONE_LEDS
err = i2c_master_write(_slave_led_1);
if (err) goto i2c_error;
err = i2c_master_write(_slave_led_2);
if (err) goto i2c_error;
err = i2c_master_write(_slave_led_3);
if (err) goto i2c_error;
#else
err = i2c_master_write(0x00);
if (err) goto i2c_error;
err = i2c_master_write(0x00);
if (err) goto i2c_error;
err = i2c_master_write(0x00);
if (err) goto i2c_error;
#endif
// Start read
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
if (err) goto i2c_error;
if (!err) {
int i;
for (i = 0; i < ROWS_PER_HAND-1; ++i) {
matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
}
matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
i2c_master_stop();
} else {
i2c_error: // the cable is disconnceted, or something else went wrong
i2c_reset_state();
return err;
}
return 0;
}
#else // USE_SERIAL
int serial_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
if (serial_update_buffers()) {
return 1;
}
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = serial_slave_buffer[i];
}
return 0;
}
#endif
uint8_t matrix_scan(void)
{
uint8_t ret = _matrix_scan();
#ifdef USE_I2C
if( i2c_transaction() ) {
#else // USE_SERIAL
if( serial_transaction() ) {
#endif
// turn on the indicator led when halves are disconnected
TXLED1;
error_count++;
if (error_count > ERROR_DISCONNECT_COUNT) {
// reset other half if disconnected
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = 0;
}
}
} else {
// turn off the indicator led on no error
TXLED0;
error_count = 0;
}
matrix_scan_quantum();
//i2c_transmit_led_state();
return ret;
}
void matrix_slave_scan(void) {
_matrix_scan();
#ifdef USE_50ONE_LEDS
_led_all_off();
if (i2c_slave_buffer[0] != 0)
_led_1_on();
if (i2c_slave_buffer[1] != 0)
_led_2_on();
if (i2c_slave_buffer[2] != 0)
_led_3_on();
#endif
int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
#ifdef USE_I2C
for (int i = 0; i < ROWS_PER_HAND; ++i) {
i2c_slave_buffer[i+3] = matrix[offset+i];
}
#else // USE_SERIAL
for (int i = 0; i < ROWS_PER_HAND; ++i) {
serial_slave_buffer[i] = matrix[offset+i];
}
#endif
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
#if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
uint8_t pin = col_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
{
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
// Clear data in matrix row
current_matrix[current_row] = 0;
// Select row and wait for row selecton to stabilize
select_row(current_row);
wait_us(30);
// For each col...
for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
// Select the col pin to read (active low)
uint8_t pin = col_pins[col_index];
uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
// Populate the matrix row with the state of the col pin
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
}
// Unselect row
unselect_row(current_row);
return (last_row_value != current_matrix[current_row]);
}
static void select_row(uint8_t row)
{
uint8_t pin = row_pins[row];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
static void unselect_row(uint8_t row)
{
uint8_t pin = row_pins[row];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
static void unselect_rows(void)
{
for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
uint8_t pin = row_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
#elif (DIODE_DIRECTION == ROW2COL)
static void init_rows(void)
{
for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
uint8_t pin = row_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
{
bool matrix_changed = false;
// Select col and wait for col selecton to stabilize
select_col(current_col);
wait_us(30);
// For each row...
for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
{
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[row_index];
// Check row pin state
if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
{
// Pin LO, set col bit
current_matrix[row_index] |= (ROW_SHIFTER << current_col);
}
else
{
// Pin HI, clear col bit
current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
}
// Determine if the matrix changed state
if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
{
matrix_changed = true;
}
}
// Unselect col
unselect_col(current_col);
return matrix_changed;
}
static void select_col(uint8_t col)
{
uint8_t pin = col_pins[col];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
static void unselect_col(uint8_t col)
{
uint8_t pin = col_pins[col];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
static void unselect_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
uint8_t pin = col_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
#endif

15
readme.md

@ -0,0 +1,15 @@
# 50one
![50one](imgur.com image replace me!)
A short description of the keyboard/project
Keyboard Maintainer: [You](https://github.com/yourusername)
Hardware Supported: The PCBs, controllers supported
Hardware Availability: links to where you can find this hardware
Make example for this keyboard (after setting up your build environment):
make 50one:default
See [build environment setup](https://docs.qmk.fm/build_environment_setup.html) then the [make instructions](https://docs.qmk.fm/make_instructions.html) for more information.

76
rules.mk

@ -0,0 +1,76 @@
SRC += i2c.c \
split_util.c \
split_leds.c \
matrix.c
# MCU name
#MCU = at90usb1286
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = yes # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE = yes # USB Nkey Rollover
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE = no # MIDI support (+2400 to 4200, depending on config)
UNICODE_ENABLE = no # Unicode
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no # Audio output on port C6
FAUXCLICKY_ENABLE = no # Use buzzer to emulate clicky switches
### Use the custom matrix.c provided by this keyboard instead of using the default one
CUSTOM_MATRIX=yes

106
split_leds.c

@ -0,0 +1,106 @@
#include <util/delay.h>
#include "split_leds.h"
extern inline void _led_1_on(void);
extern inline void _led_2_on(void);
extern inline void _led_3_on(void);
extern inline void _led_1_off(void);
extern inline void _led_2_off(void);
extern inline void _led_3_off(void);
extern inline void _led_set_master(uint8_t num, led_state_t state);
extern inline void _led_set_slave(uint8_t num, led_state_t state);
void left_led_set(uint8_t num, led_state_t state)
{
if (has_usb() && isLeftHand)
{
_led_set_master(num, state);
}
else if (has_usb() && !isLeftHand)
{
_led_set_slave(num, state);
}
}
void right_led_set(uint8_t num, led_state_t state)
{
if (has_usb() && !isLeftHand)
{
_led_set_master(num, state);
}
else if (has_usb() && isLeftHand)
{
_led_set_slave(num, state);
}
}
void both_led_set(uint8_t num, led_state_t state)
{
right_led_set(num, state);
left_led_set(num, state);
}
void left_led_all_on(void)
{
left_led_set(1, LED_ON);
left_led_set(2, LED_ON);
left_led_set(3, LED_ON);
}
void left_led_all_off(void)
{
left_led_set(1, LED_OFF);
left_led_set(2, LED_OFF);
left_led_set(3, LED_OFF);
}
void right_led_all_on(void)
{
right_led_set(1, LED_ON);
right_led_set(2, LED_ON);
right_led_set(3, LED_ON);
}
void right_led_all_off(void)
{
right_led_set(1, LED_OFF);
right_led_set(2, LED_OFF);
right_led_set(3, LED_OFF);
}
void both_led_all_on(void)
{
right_led_all_on();
left_led_all_on();
}
void both_led_all_off(void)
{
right_led_all_off();
left_led_all_off();
}
void _led_init(void)
{
DDRF |= (1<<PF5 | 1<<PF6 | 1<<PF4);
PORTF &= ~(1<<PF5 | 1<<PF6 | 1<<PF4);
}
void _led_boot_animation(void)
{
_led_all_off();
_led_1_on();
_delay_ms(100);
_led_2_on();
_delay_ms(100);
_led_3_on();
_delay_ms(100);
_led_1_off();
_delay_ms(100);
_led_2_off();
_delay_ms(100);
_led_3_off();
_led_all_off();
}

102
split_leds.h

@ -0,0 +1,102 @@
#ifndef SPLIT_LEDS_H
#define SPLIT_LEDS_H
#ifdef USE_I2C
#include <stddef.h>
#ifdef __AVR__
#include <avr/io.h>
#include <avr/interrupt.h>
#endif
#endif
#include "split_util.h"
#define LED_RED 1
#define LED_GREEN 2
#define LED_BLUE 3
enum led_state{
LED_OFF = 0,
LED_ON
};
typedef enum led_state led_state_t;
inline void _led_1_off(void) { DDRF &= ~(1<<PF4); PORTF &= ~(1<<PF4); }
inline void _led_1_on(void) { DDRF |= (1<<PF4); PORTF |= (1<<PF4); }
inline void _led_2_off(void) { DDRF &= ~(1<<PF5); PORTF &= ~(1<<PF5); }
inline void _led_2_on(void) { DDRF |= (1<<PF5); PORTF |= (1<<PF5); }
inline void _led_3_off(void) { DDRF &= ~(1<<PF6); PORTF &= ~(1<<PF6); }
inline void _led_3_on(void) { DDRF |= (1<<PF6); PORTF |= (1<<PF6); }
inline void _led_all_off(void) { _led_1_off(); _led_2_off(); _led_3_off(); }
inline void _led_all_on(void) { _led_1_on(); _led_2_on(); _led_3_on(); }
uint8_t _slave_led_1;
uint8_t _slave_led_2;
uint8_t _slave_led_3;
// MASTER LEDS: ////////////////////////////
inline void _led_set_master(uint8_t num, led_state_t state)
{
switch (num) {
case 1:
if (state == LED_ON)
_led_1_on();
else
_led_1_off();
break;
case 2:
if (state == LED_ON)
_led_2_on();
else
_led_2_off();
break;
case 3:
if (state == LED_ON)
_led_3_on();
else
_led_3_off();
break;
default:
break;
}
}
inline void _led_set_slave(uint8_t num, led_state_t state)
{
switch (num) {
case 1:
_slave_led_1 = state;
break;
case 2:
_slave_led_2 = state;
break;
case 3:
_slave_led_3 = state;
break;
default:
break;
}
}
void left_led_set(uint8_t num, led_state_t state);
void right_led_set(uint8_t num, led_state_t state);
void both_led_set(uint8_t num, led_state_t state);
void left_led_all_on(void);
void left_led_all_off(void);
void right_led_all_on(void);
void right_led_all_off(void);
void both_led_all_on(void);
void both_led_all_off(void);
void _led_init(void);
void _led_boot_animation(void);
#endif

79
split_util.c

@ -0,0 +1,79 @@
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include "split_util.h"
#include "matrix.h"
#include "keyboard.h"
#include "config.h"
#include "timer.h"
#ifdef USE_I2C
# include "i2c.h"
#endif
volatile bool isLeftHand = true;
static void setup_handedness(void) {
#ifdef EE_HANDS
isLeftHand = eeprom_read_byte(EECONFIG_HANDEDNESS);
#else
// I2C_MASTER_RIGHT is deprecated, use MASTER_RIGHT instead, since this works for both serial and i2c
#if defined(I2C_MASTER_RIGHT) || defined(MASTER_RIGHT)
isLeftHand = !has_usb();
#else
isLeftHand = has_usb();
#endif
#endif
}
static void keyboard_master_setup(void) {
i2c_master_init();
}
static void keyboard_slave_setup(void) {
timer_init();
i2c_slave_init(SLAVE_I2C_ADDRESS);
}
bool has_usb(void) {
USBCON |= (1 << OTGPADE); //enables VBUS pad
_delay_us(5);
return (USBSTA & (1<<VBUS)); //checks state of VBUS
}
void split_keyboard_setup(void) {
setup_handedness();
#ifdef USE_50ONE_LEDS
_led_init();
_led_boot_animation();
#endif
if (has_usb()) {
keyboard_master_setup();
} else {
keyboard_slave_setup();
}
sei();
}
void keyboard_slave_loop(void) {
matrix_init();
while (1) {
matrix_slave_scan();
}
}
// this code runs before the usb and keyboard is initialized
void matrix_setup(void) {
split_keyboard_setup();
if (!has_usb()) {
keyboard_slave_loop();
}
}

22
split_util.h

@ -0,0 +1,22 @@
#ifndef SPLIT_KEYBOARD_UTIL_H
#define SPLIT_KEYBOARD_UTIL_H
#include <stdbool.h>
#include "eeconfig.h"
#ifdef USE_50ONE_LEDS
#include "split_leds.h"
#endif
#define SLAVE_I2C_ADDRESS 0x32
extern volatile bool isLeftHand;
// slave version of matix scan, defined in matrix.c
void matrix_slave_scan(void);
void split_keyboard_setup(void);
bool has_usb(void);
void keyboard_slave_loop(void);
#endif
Loading…
Cancel
Save